1	Review: Seasonal Differences in the Physiology of Wild Northern Ruminants
2	
3	Walter Arnold ¹
4	
5	¹ University of Veterinary Medicine, Vienna, Department of Integrative Biology and
6	Evolution, Research Institute of Wildlife Ecology, Savoyenstraße 1, A-1160 Vienna,
7	Austria
8	
9	Corresponding author: Walter Arnold Email: walter.arnold@vetmeduni.ac.at
10	
11	Short title: Seasonal Wild Northern Ruminants
12	
13	Abstract
14	Ruminants living in seasonal environments face a two-fold challenge during winter.
15	The energetic cost of maintaining a high body temperature is higher at lower ambient
16	temperatures and this is compounded by poor availability and quality of feed. Wild
17	ruminants acclimatize to this energetic challenge by hypothermia, i.e. reduced
18	endogenous heat production and abandoning the maintenance of a high body
19	temperature, particularly in peripheral body parts. Further but lesser contributions to
20	lower energy expenditure during winter are: reduced foraging activity; lower heat
21	increment of feeding; and reduced maintenance cost of size-reduced organs.
22	Altogether, metabolic rate, estimated by the continuous measurement of heart rate, is
23	during winter down-regulated to more than half of the summer level, as is voluntary
24	food intake, even in animals fed ad libitum.

25 The transformation from the summer into the thrifty winter phenotype is also evident 26 in the physiology of digestion. Microbial protein synthesis is less facilitated by 27 diminished phosphorus secretion into the shrunk rumen during winter. In line with this 28 result, the concentration of ammonia, the end product of protein digestion in the 29 rumen, peaks in rumen liquid in spring, whereas the molar proportion of acetate, an 30 indicator of fermentation of a diet rich in fibre, peaks in winter. In contrast to reduced 31 stimulation of growth of ruminal microbes during winter, active transport of nutrients 32 across the intestinal epithelium is increased resulting in more efficient exploitation of 33 the lower amount and quality of ingested winter feed. Nevertheless, the energy 34 balance remains negative during winter. This is compensated by the use of fat 35 reserves, accumulated during summer, which become during winter a major 36 metabolic fuel. 37

38 Keywords: seasonal acclimatization, metabolic rate, thermoregulation, digestion,39 organ size

40

41 Implications

The dramatic change of environmental conditions among seasons is a challenge for free-living animals. Wild northern ruminants acclimatize to seasonality by adjusting both physiology and behaviour. A profound decrease of energy expenditure during winter, mostly achieved by a decrease in body temperature, allows a decline in voluntary feed intake. However, digestion of ingested feed becomes simultaneously more efficient. Similar reactions may also be present in domesticated ruminants, at least in primordial breeds. A better understanding of the mechanisms and extent of 49 seasonal acclimatization will help to improve both animal keeping and wildlife

- 50 management.
- 51
- 52 Introduction

53 High latitudes and altitudes are characterized by profound differences in 54 environmental conditions between summer and winter, particularly for herbivores. 55 Outside the vegetation period, the availability and quality of plant material is 56 considerably lower and feed is difficult to access if covered by snow. In addition, 57 temperatures are much lower during winter, causing endothermic organisms to 58 expend more energy for thermoregulation. Many small mammals cope with these 59 difficulties by entering hibernation or daily torpor (Geiser and Ruf, 1995). Among 60 large mammals, such reactions were for a long time only known from bears. Non-61 hibernating large mammals under cold load seemed to minimize energy requirements solely by changing to a well insulating winter fur, counter-current heat 62 63 exchange mechanisms, and reduced locomotor activity. With the advance of 64 telemetry techniques, it became possible to measure physiological and behavioural 65 reactions in free-living animals continuously over long periods. These data 66 unequivocally answered the long-standing question whether seasonal changes of 67 metabolic rate in northern ungulates are predominantly due to different intake of feed 68 (and hence heat increment of feeding), or to changes of endogenous heat production 69 (and thus basal metabolic rate), similar to the reactions of hibernators and daily 70 heterotherms (Arnold et al., 2004, Arnold et al., 2006, Turbill et al., 2011). 71 In this paper, I review studies addressing the question of seasonal acclimatization of 72 physiology and energy expenditure of northern wild ruminants. I further present as

73 yet unpublished data and analyses of samples delivered by hunters to the Research

74 Institute of Wildlife Ecology during the years 1970-2006.

75

76 Metabolism and body temperature regulation

77 In all wild northern ruminant species where seasonal acclimatization has been 78 studied in appropriate detail (i.e. with long-time measurements of high resolution), 79 profound changes have been found during the course of the year in physiological and 80 behavioural parameters (Figure 1). Although these species do not hibernate or show 81 daily torpor in the classical sense, they do become hypometabolic during the winter 82 period, as indicated by a reduction of heart rate (f_{H}), a good proxy of metabolic rate 83 (Turbill et al., 2011). This reduction is most pronounced in species dwelling in alpine 84 (chamois, Alpine ibex), or polar habitats (Svalbard reindeer) with particularly harsh 85 winter conditions (Figure 1). 86 The reduction of energy expenditure during winter is accomplished to some degree 87 by reduced locomotor activity reflecting less foraging (Arnold et al., 2018), but most 88 strongly correlates with body temperature (T_b) measured in the rumen (T_r, slightly 89 higher but closely following core T_b, Beatty et al., 2008) (Figure 1). Decreased 90 endogenous heat production as the major contribution to reduced metabolic rate 91 during winter has been found in many species of ungulates (Arnold et al., 2004, 92 Arnold et al., 2006, Signer et al., 2011, Turbill et al., 2011, Brinkmann et al., 2012, 93 Riek et al., 2017, Arnold et al., 2018). In red deer, for instance, the annual variation of 94 T_r is in the range of 0.5°C, which is sufficient to explain most of the annual variation 95 of $f_{\rm H}$ (estimated effect size 24.5 beats • min⁻¹, annual range of $f_{\rm H}$ variation 30 beats • 96 min⁻¹ (Turbill *et al.*, 2011)). The effect is greater than expected from the Newtonian

97 equation of thermoregulatory heat production. The discrepancy was initially

98	postulated to be the result of the simplified calculation assuming a uniform
99	temperature throughout the body. However, red deer – and presumably all wild
100	ungulates living in seasonally cold environments - allow substantial peripheral
101	cooling, particularly during nocturnal bouts of hypometabolism, with subcutaneous
102	temperature measured at the neck dropping to 15°C during late winter nights (Arnold
103	et al., 2004). Therefore, a slightly lower core T_b apparently indicates a much greater
104	reduction in the mean temperature of the entire body mass and hence basal
105	metabolic rate. Allowing considerably low temperature in peripheral parts of the body,
106	particularly in the extremities, is long been known as an important thermoregulatory
107	strategy in mammals and birds of the Arctic (Irving and Krog, 1955). The evidence
108	available now challenges the traditional view that a change in thermal conductance is
109	the primary mechanism available to large mammals for reducing their
110	thermoregulatory energy expenditure (Scholander et al., 1950). Instead, large
111	mammals seem to reduce endogenous heat production in response to cold exposure
112	and nutritional bottlenecks (Turbill et al., 2011, Brinkmann et al., 2017, Thompson et
113	al., 2019). This process is analogous to that of small species employing daily torpor
114	or hibernation and has, at least temporally, comparable consequences for T_{b} in
115	peripheral parts of the body (Arnold et al., 2004, Arnold et al., 2006, Brinkmann et al.,
116	2012). Experimental food restriction elicits a further decrease of f_H and T_r during
117	winter (Turbill et al., 2011, Brinkmann et al., 2017), but does not suppress the
118	pronounced increase of f_H and T_r in spring, nor does <i>ad lib</i> . feeding prevent the
119	decline towards the winter trough (Turbill et al., 2011).

121 Use of fat reserves

122 Another analogy to hibernation, manifest in wild northern ungulates, is the switch to 123 body fat reserves as an important metabolic fuel. These fat reserves are built up 124 during summer and autumn, and are consumed during winter (Figure 2). The use of 125 body fat reserves during winter is apparently associated with a reduction of appetite and hence less motivation to search for scarce winter-feed. Red deer, for instance, 126 127 halve their feed intake during winter even when fed ad lib. (Arnold et al., 2015b). The 128 seasonal difference in energy intake is similar to that caused by reproduction during 129 peak lactation in June (Figure 3). The reduction of appetite during winter is controlled 130 by photoperiod (Loudon, 1994) and seems to be ubiquitous among wild northern 131 ungulates (Peltier et al., 2003, Arnold et al., 2004, Barboza et al., 2006, Kuntz et al., 132 2006, Crater and Barboza, 2007, Brinkmann et al., 2017). Changes in feed intake, on 133 the other hand, lead to a different heat increment of feeding, which contributes to 134 seasonal changes of metabolic rate, although not close to the extent as previously 135 thought (Lawler and White, 2003, Arnold et al., 2004, Arnold et al., 2006, Turbill et al., 2011). 136

137

138 Organ size and body mass

139 Since less feed needs to be processed during winter, this can be accomplished with 140 a smaller alimentary tract, which additionally saves energy necessary for maintaining 141 expensive tissue (Stevens and Hume, 1995). Profound shrinking of the gut and 142 visceral organs, for instance, occurs in marmots during hibernation (Hume et al., 143 2002), but is also known from chamois, red deer, and roe deer, and takes place even 144 when animals are fed ad lib. (Arnold et al., 2015b). Data on liver mass, available from 145 free-living animals of three species of wild ruminants, clearly demonstrate the 146 magnitude of seasonal change in the size of visceral organs (Figure 4). Due to

changes in fat reserves and organ size, total body mass also shows considerable
seasonal variation (Figure 5; similar changes are reported for Alpine ibex (Giacometti *et al.*, 1997), bighorn sheep (Pelletier *et al.*, 2011), bison (Rutley and Hudson, 2000),
black-tailed deer (Parker *et al.*, 1993), moose (Milner *et al.*, 2012); muskoxen (Crater
and Barboza, 2007), reindeer (Tyler and Blix, 1990), and white-tailed deer
(DelGiudice *et al.*, 1992)).

153

154 Digestion and uptake of nutrients

155 In contrast to the reduction of the size of the alimentary tract and the surface area for nutrient absorption, the efficacy of nutrient extraction may be increased (Ferraris and 156 157 Carey, 2000), as found for protein digestion in wintering red deer (Arnold et al., 158 2015b). Three mechanisms may explain this result. Firstly, models predict that 159 optimal digestion time is longer if food quality is low. When plants contain a high 160 amount of lignified cell walls, the rumen-reticulum fills with residues that ferment so slowly that passage out of the forestomach is impeded (Hume, 1989). Indeed, longer 161 162 retention time during periods when feed is of low digestibility seems to be common 163 among ungulates (Lechner-Doll et al., 1991, Holand, 1994, Kuntz et al., 2006). 164 However, in small ruminants such as roe deer, the strategy of increasing cell-wall 165 digestion by increased rumen retention is severely limited by the small size of the 166 rumen-reticulum. Therefore, roe deer depend more than other wild ruminants on a 167 selective feeding strategy to enhance winter survival (Holand, 1994). 168 Secondly, expression of transporter proteins seems to be increased during winter. 169 For example, in red deer the uptake of dipeptides into brush-border membrane 170 vesicles, prepared from enterocytes, is higher during winter (Arnold et al., 2015b). 171 This might be linked to seasonal expression profiles of the proton dependent peptide

172 transporter 1 (pepT1). Upregulation of pepT1 during winter could be the mechanism 173 responsible for increased extraction of peptides from digested proteins, and be an 174 integrative part of the winter phenotype of wild ruminants. A similar scenario is likely 175 to exist in red deer for glucose uptake (Arnold et al., 2015b). Therefore, it seems that 176 the energetic cost of additional transporter expression during winter is lower than the 177 benefit derived from attenuating an inevitably negative energy balance by maximal 178 exploitation of poor feed. 179 Thirdly, a reduction of the number and size of ruminal papillae and a smaller rumen 180 volume, as is typical for winter acclimatized wild ruminants (reviewed in Arnold et al., 181 2015b), may sustain the rate of absorption of short chain fatty acids (SCFA). Due to 182 lower intake of feed, and presumably diminished microbial fermentation at lower T_r 183 (Crater and Barboza, 2007), SCFA production is lower during winter (Figure 6; 184 Tataruch and Onderscheka, 1993, Crater et al., 2007). The uptake of SCFA, the 185 most important source of energy for ruminants, occurs mainly by diffusion 186 (Aschenbach et al., 2011). Hence, the surface area for SCFA absorption must be 187 reduced during winter in order to maintain a sufficient gradient of SCFA 188 concentrations between rumen content and blood. Therefore, the rapid loss of 189 mucosal mass induced by malnutrition might, for wild ruminants, in fact be functional. 190 This interpretation is supported by the finding of a reduction of rumen volume by 191 about one third during winter in red deer, although the study animals did not lose 192 body mass due to the availability of pellets ad lib. (Arnold et al., 2015b). Interestingly, 193 high SCFA concentrations, and particularly those of butyric and propionic acid, 194 stimulate ruminal blood flow and induce the formation of new papillae by increasing 195 the mitotic rate of the papillary epithelium (Hofmann, 1989). SCFA concentrations in 196 the rumen peak in spring in red deer, roe deer, and chamois (Figure 6; Tataruch and

197 Onderscheka, 1993), and, at least in red deer, especially the molar proportions of 198 n-butyric, propionic, and n-valeric acid (Figure 7; Tataruch and Onderscheka, 1993). 199 Similar changes are reported for mule deer (Short et al., 1966), and muskoxen 200 (Crater et al., 2007). On the other hand, the molar proportion of acetate, an indicator 201 of fermentation of a diet rich in fibre (Weiss et al., 2017), is highest during winter 202 (Figure 7; Short et al., 1966, Tataruch and Onderscheka, 1993, Crater et al., 2007). 203 Higher concentrations of SCFA are indicative of high digestibility of feed and molar 204 proportions of n-butyric and n-valeric acid increase with the content of crude protein 205 in the diet (Tataruch and Onderscheka, 1993). Further, the concentration of 206 ammonia, the end product of protein digestion in the rumen, also peaks in rumen 207 liquid in spring (red deer, p<0.001; roe deer, p<0.001; 95% confidence interval (CI) of 208 peak location: red deer, mid-April to mid-May; roe deer, early March to early May). 209 Altogether, the changes of the concentrations of fermentation products in the rumen 210 liquid reflect the increase of feed availability and quality in spring. This may well be a 211 signal that, together with increasing day-length, elicits the change into the anabolic 212 summer phenotype with high metabolic rate (Figure 1), and regrowth of the 213 alimentary tract and visceral organs (Figure 4; Arnold et al., 2015b). 214 215 Stimulation of microbial protein biosynthesis by phosphorus secretion 216 However, seasonally varying feed quality and Tr are not the only variables that shape 217 the community of ruminal symbionts. A further mechanism seems to be seasonally 218 changing concentrations of phosphorus in the rumen content (Figure 8). The CI of 219 the location of peak phosphorus concentration overlaps in each species with the CI

of the location of peak concentration of crude protein in the rumen content (cf. Figure8, Figure 9). Phosphorus is essential for growth and protein synthesis of the ruminal

222	microbiota (Durand and Kawashima, 1980). High phosphorus concentrations during
223	summer indicate increased delivery by the host, presumably via saliva (Breves and
224	Schröder, 1991), as the phosphorus concentration of plants follows the opposite
225	pattern. This is indicated by the phosphorus concentration in the stomach content of
226	the monogastric European brown hare (Figure 8). From these data it can be
227	concluded that microbial growth is stimulated by increased phosphorus secretion into
228	the rumen during summer when the need for protein synthesis by rumen microbes is
229	high, e.g. for growth and reproduction (Peltier and Barboza, 2003, Knott <i>et al.</i> , 2005).
230	In line with this interpretation, the highest phosphorus and crude protein
231	concentrations are present throughout the year in the rumen content of roe deer
232	(Figures 8,9), a concentrate selecting species with limited ability for cell-wall
233	digestion.
234	With regard to the endogenous phosphate recycling, increased phosphorus secretion
235	by the host might be mediated by respective changes in the salivary phosphate
236	secretion and intestinal phosphate absorption. Expression of a sodium-dependent
237	phosphate transporter has been demonstrated in the parotid gland of goats (Huber et
238	al., 2003) and in jejunal tissue (Huber et al., 2002). It is therefore likely that a higher
239	expression level of this transporter during summer increases the endogenous
240	recycling of phosphorus in wild ruminants and hence produces the summer peak of
241	phosphorus in the rumen content.
242	Altogether, peaks of crude protein in rumen contents, rather than seasonal changes
243	of crude protein concentration in the feed, reflect high microbial protein biosynthesis,
244	governed by seasonal changes in host-derived gastrointestinal mechanisms (Figure
245	10). This view is supported by the aforementioned pattern of ruminal crude protein
246	digestion, indicated by ammonia production. In red deer, peak concentration of

248	its most important natural feed plants, but clearly before the crude protein	
249	concentration in dry matter rumen content reaches its maximum (cf. peak CI of	
250	ammonia production, mid-April to mid-May, with Figure 10).	
251		
252	Conclusion	
253	Profound phenotypical plasticity, evident in considerable seasonal changes of	
254	physiology and behaviour, seems to be ubiquitous in wildlife species living in	
255	seasonal environments of the northern hemisphere, including ruminants.	
256	Acclimatization to different living conditions during winter and summer is easily seen	
257	in the change from a winter to a summer coat, and vice versa. However, this visible	
258	seasonal acclimatization is only one feature of an all-embracing change taking place	
259	during the transition from a thrifty, catabolic winter phenotype into a highly	
260	productive, anabolic summer state, and encompasses the organismic and molecular	
261	level (Arnold <i>et al.</i> , 2015a).	
262	The major environmental cue governing this change is the photoperiod. It is well	
263	established that an endogenous circannual rhythm has a role in coordinating the	
264	expression of seasonal behaviours, such as reproduction, migration, hibernation,	
265	molt, and the physiological and behavioural changes outlined above. A circannual	
266	biorhythm is maintained by cells residing in the hypothalamus and is entrained to	
267	time of the year by changes in pineal secretion of melatonin according to the	
268	photoperiod (Lincoln et al., 2003). The importance of the melatonin signal is revealed	
269	by the experimental administration of melatonin during summer, which causes in red	
270	deer, for instance, a phase-advance of the endogenous seasonal rhythm with	

ammonia in rumen liquid occurs right after the peak of crude protein concentration in

247

271 advanced initiation of reproduction and seasonal reduction of voluntary feed intake

272 (Heydon et al., 1993).

- 273 We know meanwhile that seasonal differences in physiology are also present in
- 274 domesticated animals, at least in primordial breeds (Brinkmann et al., 2012,
- 275 Brinkmann et al., 2017, Riek et al., 2017). The degree to which such differences exist
- 276 in breeds of highly productive farm animals is far less understood and remains a
- 277 scientific challenge for the future.
- 278

279 Acknowledgements

- 280 I am grateful to numerous hunters and in particular, to the Fonds für Umweltstudien 281 Achenkirch for providing rumen content samples and information about body and 282 organ mass of hunted animals. I thank Agnes Haymerle and Felix Knauer for 283 conducting the telemetry field work with chamois. The study of Taurus cattle was 284 carried out by the Hortobágy National Park and supported by Zoo Cologne. For field 285 work in Hortobágy, I thank Kristin Brabender, Viktor Molnar, Endre Sos, Gabrielle 286 Stalder and Chris Walzer. My special thanks go to Thomas Ruf for his help with 287 statistical analysis of periodic patterns, to Frieda Tataruch and the late Kurt 288 Onderscheka for building up the reference values database of wildlife species, 289 available at the Research Institute of Wildlife Ecology, to Renate Hengsberger for 290 help with references and editing of the manuscript, and to Steve Smith for correcting 291 the English. The author was supported by a grant from the Austrian Science Fund 292 (FWF P 30061 B25).
- 293

294 Declaration of interest

295 There is no potential conflicts of interest.

297	Ethics statement	
298	All procedures outlined here were carried out in accordance with the respective	
299	national legislation. Correspondent ethics statements can be found in the cited	
300	publications. The studies of chamois and Taurus cattle were discussed and approved	
301	by the institutional ethics committee of the University of Veterinary Medicine Vienna.	
302		
303	Software and data repository resources	
304	None of the data were deposited in an official repository	
305		
306	References	
307	Arnold W, Ruf T and Kuntz R 2006. Seasonal adjustment of energy budget in a large wild	Feldfunktion geändert
308	mammal, the Przewalski horse (Equus ferus przewalskii) II. Energy expenditure.	
309	Journal of Experimental Biology 209, 4566-4573.	
310	Arnold W, Giroud S, Valencak TG and Ruf T 2015a. Ecophysiology of Omega Fatty Acids: A	
311	Lid for Every Jar. Physiology 30, 232-240.	
312	Arnold W, Ruf T, Reimoser S, Tataruch F, Onderscheka K and Schober F 2004. Nocturnal	
313	hypometabolism as an overwintering strategy of red deer (Cervus elaphus). American	
314	Journal of Physiology - Regulatory and Integrative Comparative Physiology 286, R174-	
315	R181.	
316	Arnold W, Ruf T, Loe LE, Irvine RJ, Ropstad E, Veiberg V and Albon SD 2018. Circadian	
317	rhythmicity persists through the Polar night and midnight sun in Svalbard reindeer.	
318	Scientific Reports 8, 14466.	
319	Arnold W, Beiglböck C, Burmester M, Guschlbauer M, Lengauer A, Schröder B, Wilkens M	
320	and Breves G 2015b. Contrary seasonal changes of rates of nutrient uptake, organ	
321	mass, and voluntary food intake in red deer (Cervus elaphus). American Journal of	
322	Physiology - Regulatory and Integrative Comparative Physiology 309, R277-R285.	
	13	

325	Science 89, 1092-1107.
326	Barboza PS, Peltier TC and Forster RJ 2006. Ruminal Fermentation and Fill Change with
327	Season in an Arctic Grazer: Responses to Hyperphagia and Hypophagia in Muskoxen
328	(Ovibos moschatus). Physiological and Biochemical Zoology 79, 497-513.
329	Beatty DT, Barnes A, Taylor E and Maloney SK 2008. Do changes in feed intake or ambient
330	temperature cause changes in cattle rumen temperature relative to core temperature?
331	Journal of Thermal Biology 33, 12-19.
332	Breves G and Schröder B 1991. Comparative Aspects of Gastrointestinal Phosphorus
333	Metabolism. Nutrition Research Reviews 4, 125-140.
334	Brinkmann L, Gerken M and Riek A 2012. Adaptation strategies to seasonal changes in
335	environmental conditions of a domesticated horse breed, the Shetland pony (Equus
336	ferus caballus). The Journal of Experimental Biology 215, 1061-1068.
337	Brinkmann L, Riek A and Gerken M 2017. Long-term adaptation capacity of ponies: effect of
338	season and feed restriction on blood and physiological parameters. Animal 12, 88-97.
339	Crater AR and Barboza PS 2007. The rumen in winter: Cold shocks in naturally feeding
340	muskoxen (Ovibos moschatus). Journal of Mammalogy 88, 625-631.
341	Crater AR, Barboza PS and Forster RJ 2007. Regulation of rumen fermentation during
342	seasonal fluctuations in food intake of muskoxen. Comparative Biochemistry and
343	Physiology A-Molecular & Integrative Physiology 146, 233-241.
344	DelGiudice GD, Mech LD, Kunkel KE, Gese EM and Seal US 1992. Seasonal patterns of
345	weight, hematology, and serum characteristics of free-ranging female deer in
346	Minnesota. Canadian Journal of Zoology 70, 974-983.
347	Durand M and Kawashima R 1980. Influence of minerals in rumen microbial digestion. In
348	Digestive Physiology and Metabolism in Ruminants: Proceedings of the 5th

Aschenbach JR, Penner GB, Stumpff F and Gäbel G 2011. Ruminant Nutrition Symposium:

Role of fermentation acid absorption in the regulation of ruminal pH. Journal of Animal

323

324

349 International Symposium on Ruminant Physiology, held at Clermont — Ferrand, on

350	3rd–7th September, 1979 (eds. Y Ruckebusch and P Thivend), pp. 375-408, Springer
351	Netherlands, Dordrecht.
352	Ferraris RP and Carey HV 2000. Intestinal transport during fasting and malnutrition. Annual
353	Review of Nutrition 20, 195-219.
354	Geiser F and Ruf T 1995. Hibernation versus Daily Torpor in Mammals and Birds:
355	Physiological Variables and Classification of Torpor Patterns. Physiological Zoology 68,
356	935-966.
357	Giacometti M, Bassano B, Peracino V and Ratti P 1997. Die Konstitution des
358	Alpensteinbockes (Capra i. ibex L.) in Abhängigkeit von Geschlecht, Alter, Herkunft
359	und Jahreszeit in Graubünden (Schweiz) und im Parco Nazionale Gran Paradiso
360	(Italien). Zeitschrift für Jagdwissenschaft 43, 24-34.
361	Heydon MJ, Sibbald AM, Milne JA, Brinklow BR and Loudon ASI 1993. The interaction of
362	food availability and endogenous physiological cycles on the grazing ecology of red
363	deer hinds (Cervus elaphus). Functional Ecology 7, 216-222.
364	Hofmann RR 1989. Evolutionary steps of ecophysiological adaptation and diversification of
365	ruminants: a comparative view of their digestive system. Oecologia 78, 443-457.
366	Holand Ø 1994. Seasonal dynamics of digestion in relation to diet quality and intake in
367	European roe deer (Capreolus capreolus). Oecologia 98, 274-279.
368	Huber K, Walter C, Schröder B and Breves G 2002. Phosphate transport in the duodenum
369	and jejunum of goats and its adaptation by dietary phosphate and calcium. American
370	Journal of Physiology - Regulatory and Integrative Comparative Physiology 283, R296-
371	R302.
372	Huber K, Roesler U, Muscher A, Hansen K, Widiyono I, Pfeffer E and Breves G 2003.
373	Ontogenesis of epithelial phosphate transport systems in goats. American Journal of
374	Physiology - Regulatory and Integrative Comparative Physiology 284, R413-R421.
375	Hume ID 1989. Optimal digestive strategies in mammalian herbivores. Physiological Zoology
376	62, 1145-1163.

377	Hume ID, Beiglböck C, Ruf T, Frey-Roos F, Bruns U and Arnold W 2002. Seasonal changes	
378	in morphology and function of the gastrointestinal tract of free-living alpine marmots	
379	(Marmota marmota). Journal of Comparative Physiology B: Biochemical Systemic and	
380	Environmental Physiology 172, 197-207.	
381	Irving L and Krog J 1955. Temperature of skin in the arctic as a regulator of heat. Journal of	
382	Applied Physiology 7, 355-364.	
383	Knott KK, Barboza PS and Bowyer RT 2005. Growth in Arctic ungulates: Postnatal	
384	development and organ maturation in Rangifer tarandus and Ovibos moschatus.	
385	Journal of Mammalogy 86, 121-130.	
386	Kuntz R, Kubalek C, Ruf T, Tataruch F and Arnold W 2006. Seasonal adjustment of energy	
387	budget in a large wild mammal, the Przewalski horse (Equus ferus przewalskii) I.	
388	Energy intake. The Journal of Experimental Biology 209, 4557-4565.	
389	Lawler JP and White RG 2003. Temporal responses in energy expenditure and respiratory	
390	quotient following feeding in the muskox: influence of season on energy costs of eating	
391	and standing and an endogenous heat increment. Canadian Journal of Zoology 81,	
392	1524-1538.	
393	Lechner-Doll M, Kaske M and von Engelhardt W 1991. Factors affecting the mean retention	
394	time of particles in the forestomach of rumiants and camelids. In Physiological aspects	
395	of digestion and metabolism in ruminants (eds. T Tsuda, Y Sasaki and R Kawashima),	
396	pp. 455-482, Academic Press, London, <mark>United Kingdom.</mark>	
397	Lincoln GA, Andersson H and Loudon A 2003. Clock genes in calendar cells as the basis of	
398	annual timekeeping in mammals - a unifying hypothesis. Journal of Endocrinology 179,	
399	1-13.	
400	Loudon ASI 1994. Photoperiod and the regulation of annual and circannual cycles of food	
401	intake. Proceedings of the Nutrition Society 53, 495-507.	
402	Milner JM, Beest FM, Solberg EJ and Storaas T 2012. Reproductive success and failure: the	
403	role of winter body mass in reproductive allocation in Norwegian moose. Oecologia, 1-	
404	11.	

405	Parker KL, Gillingham MP, Hanley TA and Robbins CT 1993. Seasonal patterns in body
406	mass, body composition, and water transfer rates of free-ranging and captive black-
407	tailed deer in Alaska. Canadian Journal of Zoology 71, 1397-1404.
408	Pelletier F, Réale D, Grant D, Coltman DW and Festa-Bianchet M 2011. Selection on
409	heritable seasonal phenotypic plasticity of body mass. Evolution 61, 1969-1979.
410	Peltier TC and Barboza PS 2003. Growth in an arctic grazer: Effects of sex and dietary
411	nitrogen on yearling muskoxen. Journal of Mammalogy 84, 915-925.
412	Peltier TC, Barboza PS and Blake JE 2003. Seasonal Hyperphagia Does Not Reduce
413	Digestive Efficiency in an Arctic Grazer. Physiological and Biochemical Zoology 76,
414	471-483.
415	Reimoser S 2012. Influence of anthropogenic disturbance on activity, behaviour and heart
416	rate of roe deer (Capreolus capreaolus) and red deer (Cervus elaphus), in context of
417	their daily and yearly patterns. In Deer: Habitat, behaviour and conservation (ed. AA
418	Cahler), pp. 1-95, Nova Science Publishers, Hauppauge, New York, <mark>USA</mark> .
419	Riek A, Brinkmann L, Gauly M, Perica J, Ruf T, Arnold W, Hambly C, Speakman JR and
420	Gerken M 2017. Seasonal changes in energy expenditure, body temperature and
421	activity patterns in Ilamas (Lama glama). Scientific Reports 7, 7600.
422	Rutley BD and Hudson RJ 2000. Seasonal energetic parameters of free-grazing bison (Bison
423	bison). Canadian Journal of Animal Science 80, 663-671.
424	Scholander PF, Hock R, Walters V, Johnson F and Irving L 1950. Heat regulation in some
425	arctic and tropical mammals and birds. Biological Bulletin 99, 237-258.
426	Short HL, Medin E and Anderson AE 1966. Seasonal Variations in Volatile Fatty Acids in the
427	Rumen of Mule Deer. The Journal of Wildlife Management 30, 466-470.
428	Signer C, Ruf T and Arnold W 2011. Hypometabolism and basking: The strategies of Alpine
429	ibex to endure harsh over-wintering conditions. Functional Ecology 25, 537-547.
430	Stevens EC and Hume ID 1995. Comparative physiology of the vertebrate digestive system.
431	Cambridge Univ Press, N.Y., Melbourne, <mark>Australia.</mark>
432	Stokstad E 2015. Bringing back the aurochs. Science 350, 1144-1147.

433	Tataruch F and Onderscheka K 1993. Gehalt an Ammoniak und flüchtigen Fettsäuren im
434	Pansensaft von Rot-, Reh- und Gamswild. Wiener Tierärztliche Monatsschrift 80, 269-
435	274.
436	Tataruch F and Onderscheka K 1996. Chemische Analysen der Panseninhalte von Steinwild
437	in Graubünden. Zeitschrift für Jagdwissenschaft 42, 18-25.
438	Thompson DP, Barboza PS, Crouse JA, McDonough TJ, Badajos OH and Herberg AM 2019.
439	Body temperature patterns vary with day, season, and body condition of moose (Alces
440	alces). Journal of Mammalogy, 1-13.
441	Turbill C, Ruf T, Mang T and Arnold W 2011. Regulation of heart rate and rumen
442	temperature in red deer: effects of season and food intake. Journal of Experimental
443	Biology 214, 963-970.
444	Tyler NJC and Blix AS 1990. Survival strategies in arctic ungulates. Rangifer Special Issue 3,
445	211-230.
446	Wascher CAF, Kotrschal K and Arnold W 2018. Free-living greylag geese adjust their heart
447	rates and body core temperatures to season and reproductive context. Scientific
448	Reports 8, 2142.
449	Weiss CP, Gentry WW, Meredith CM, Meyer BE, Cole NA, Tedeschi LO, McCollum FT, III
450	and Jennings JS 2017. Effects of roughage inclusion and particle size on digestion and
451	ruminal fermentation characteristics of beef steers. Journal of Animal Science 95,
452	1707-1714.

454 Figure captions

455

456	Figure 1 Seasonal change of heart rate, rumen temperature, and activity in six
457	species of wild ungulates (roe deer (Capreolus capreolus): reanalysed data from
458	(Reimoser, 2012); red deer (Cervus elaphus): reanalysed data from (Turbill et al.,
459	2011); chamois (Rupicapra rupicapra): unpublished data sampled 2009-2012 from
460	nine male and seven female chamois (ages 4-12 years), living free in an alpine area
461	in Upper Austria; Alpine ibex (Capra ibex): reanalysed data from (Signer et al., 2011);
462	Svalbard reindeer (Rangifer tarandus platyrhynchus): reanalysed data from (Arnold
463	et al., 2018); Taurus cattle: unpublished data from six >2-year-old females living free
464	in Hortobágy National park, Hungary. Taurus cattle are the result of a long quest to
465	resurrect the extinct aurochs (Bos primigenius) (Stokstad, 2015). Chamois and
466	Taurus cattle were studied with the same telemetry technique used for red deer,
467	alpine ibex, and Svalbard reindeer. Plotted are monthly means with 95% confidence
468	intervals (CI) reflecting variation between individuals.
469	
470	Figure 2 Seasonal change of kidney fat mass as an indicator of body fat reserves of
471	free-living chamois, red deer, and roe deer. Plotted are monthly means with 95% Cl,
472	single values are indicated by a white dot. Significance of seasonal variation was
473	tested by linear modelling with sine (t) and cosine (t) as predictors with t as month in
474	radians. Lines represent periodic fits to the data, horizontal bars at peaks the 95% CI

- 475 of peak location.
- 476

Figure 3 Seasonal change of daily energy intake from pellets and natural vegetation
of adult red deer hinds provided *ad libitum* with pellets (reanalysed data from Arnold

479	et al., 2015b). Plotted are monthly means with 95% Cl, error bars are lacking for yeld
480	hinds in February and October because only one individual was measured; linear
481	mixed-effects modelling: effect of month, F _(5,60) =9.53, p<0.0001; effect of
482	reproduction, $F_{(1,60)}$ =0.36, p=0.552; interaction of month and reproduction,
483	F _(5,60) =0.44, p=0.817.
484	

Figure 4 Seasonal change of liver mass of free-living chamois, red deer, and roe
deer. Plotted are monthly means with 95% CI, single values are indicated by a white
dot. Significance of seasonal variation was tested by linear modelling with sine (t)
and cosine (t) as predictors with t as month in radians. Lines represent periodic fits to
the data, horizontal bars at peaks the 95% CI of peak location.

491	Figure 5 Seasonal change of body mass of free-living chamois, red deer, and roe
492	deer. Body mass is plotted as a percentage of the mean body mass of the respective
493	age/sex class of a species. Adult body mass is achieved at the age of 2 in female
494	and 5 in male chamois, 4 in female and 7 in male red deer, 2 in female and 4 in male
495	roe deer, respectively. Plotted are monthly means with 95% CI. Significance of
496	seasonal variation was tested by linear modelling with sine (t) and cosine (t) as
497	predictors with t as month in radians. Lines represent periodic fits to the data,
498	horizontal bars at peaks the 95% CI of peak location.
499	
500	Figure 6 Seasonal change of total short chain fatty acid (SCFA) concentrations in the
501	rumen liquid of free-living red and roe deer (for methods see Tataruch and

- 502 Onderscheka, 1993). Plotted are monthly means with 95% CI, single values are
- 503 indicated by a white dot. Significance of seasonal variation was tested by linear

modelling with sine (t) and cosine (t) as predictors with t as day of the year in radians.
Lines represent periodic fits to the data, horizontal bars at peaks the 95% CI of peak
location.

507

Figure 7 Seasonal change of the molar proportions of acetic (A), propionic (B), n-butyric (C), and n-valeric acid (D) in the total amount of short chain fatty acids in the rumen liquid of free-living red and roe deer (for methods see Tataruch and Onderscheka, 1993). Plotted are monthly means with 95% CI. Significance of seasonal variation was tested by linear modelling with sine (t) and cosine (t) as predictors with t as day of the year in radians. Lines represent periodic fits to the data, horizontal bars at peaks the 95% CI of peak location.

515

Figure 8 Seasonal change of phosphorus concentrations in the rumen content of four wild ruminant species and in the stomach content of the monogastric European brown hare (for methods see Tataruch and Onderscheka, 1996). Plotted are monthly means with 95% CI. Significance of seasonal variation was tested by linear modelling with sine (t) and cosine (t) as predictors with t as day of the year in radians. Lines represent periodic fits to the data, horizontal bars indicate the 95% CI of peak or trough location, respectively.

523

Figure 9 Seasonal change of crude protein in the rumen content of free-living wild
ruminants (for methods see Tataruch and Onderscheka, 1996). Plotted are monthly
means with 95% CI. Significance of seasonal variation was tested by linear modelling
with sine (t) and cosine (t) as predictors with t as day of the year in radians. Lines

- 528 represent periodic fits to the data, horizontal bars at peaks the 95% CI of peak
- 529 location.
- 530
- 531 Figure 10 Annual course of average crude protein concentration in the 10 plants
- 532 most frequently eaten by red deer hinds that lived in a 45 ha enclosure under close to
- 533 natural conditions (squares, dark green, for details on methods, see Arnold et al.,
- 534 2015b), and in the stomach content of free-living red deer (circles, light green, same
- 535 data as shown in Figure 9). Shaded areas indicate 95% CI of the overall mean
- 536 courses determined by spline fitting (for details see Wascher et al., 2018). White
- 537 horizontal bars within belts indicate 95% CI of peak location.

